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1 Foreword

In 1994 when Peter Shor discovered his factorization algorithm, it was generally
believed that now that there was a better understanding of quantum algorithms,
more would be quickly discovered and the field would soon reach the kind of
maturity that we associate with the field of (classical) randomized algorithms,
for example. These hopes were bolstered when I discovered the search algo-
rithm in 1996, especially when it was followed by the discovery of the amplitude
amplification principle in 1998 which gave a general framework for the design
of quantum algorithms. This was the background in which I wrote my original
proposal in 1998.

The reality over the last few years has been sobering. Despite considerable
research, it is still the belief that there are only two general quantum algorithms
where quantum mechanics gives an advantage over classical - the factorization
algorithm and the search algorithm. The factorization algorithm has continued
to be a standalone algorithm (though a very important one), searching is a
much simpler framework and through the amplitude amplification principle, it
is easily adapted to different problems - it has resulted in numerous applications
and variations.

There has been considerable research on extensions & modifications of quan-
tum search. The amplitude amplification generalization of 1998 showed that in
the quantum search algorithm, almost any unitary operation could replace the
Walsh-Hadamard (W-H) transformation with only a constant slowdown. At first
sight this seemed remarkable since the W-H transform was known to be singu-
larly significant for other algorithms such as Simon’s algorithm and Deutsch &
Deutsch-Jozsa algorithms. This was explained by interpreting the algorithm as
a simple rotation in two dimensional Hilbert space where these two dimensions
are carefully defined vectors in the two-dimensional plane of rotation. With this
definition, what the algorithm accomplishes is a gradual rotation from the vector
corresponding to the initial state to the vector corresponding to the target state.
This rotation is accomplished by two inversions about slightly non-orthogonal
directions - it is an elementary theorem of Euclidean geometry that two inver-
sions about non-orthogonal axes in a plane, lead to a well-defined rotation of
any vector in the plane. This generalization and understanding considerably
broadened the scope of application of the search algorithm. From a physical
implementation point of view, it showed that there was a lot of leeway in choos-
ing the driving transformation in quantum search, thus reducing the need for
error-correction. From a computer science standpoint, it resulted in a lot of new
algorithms since the main driving transformation could be chosen depending on
the parameters of the problem.

There has been considerable research on these topics. A quick search of the
quant-ph archives for relevant articles resulted in 241 hits. Some examples:

1. A framework for fast quantum mechanical algorithms, Lov K. Grover,
quant-ph/9711043, STOC ’98.

2. Quantum counting, Gilles Brassard, Peter Hoyer, Alain Tapp, quant-
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ph/9805082.

3. The quantum query complexity of approximating the median and related
statistics, Ashwin Nayak, Felix Wu, STOC, 1999, quant-ph/9804066.

4. Fast quantum algorithms for numerical integrals and stochastic processes,
Daniel S. Abrams, Colin P. Williams, quant-ph/9908083.

5. Searching in Grover’s Algorithm, Richard Jozsa, quant-ph/9901021.

6. Spectra of Quantized Walks and a v/d¢ rule, quant-ph/0401053, Mario
Szegedy.

7. Grover’s Quantum Search Algorithm for an Arbitrary Initial Mixed State,
quant-ph/0306183, Eli Biham, Dan Kenigsberg.

8. Quantum Search of Spatial Regions, quant-ph/0303041, Scott Aaronson,
Andris Ambainis.

9. Quantum Algorithms for Lowest Weight Paths and Spanning Trees in
Complete Graphs, quant-ph/0303131, Mark Heiligman.

10. Tradeoffs in the Quantum Search Algorithm, quant-ph/0201152, Lov K.
Grover.

11. Similarity between Grover’s quantum search algorithm and classical two-
body collisions, Jingfu Zhang, Zhiheng Lu, quant-ph/0110077.

12. Quantum walk algorithm for element distinctness, Andris Ambainis, quant-
ph/0311001.

The list goes on and on.

One idea that was mot motivated by the search algorithm was the one
that appeared in the following paper: "Strengths and Weaknesses of Quan-
tum Computing," STAM Journal of Computing, 26[5]: 1510-1523, 1997, quant-
ph/9701001. The authors were: Charles H. Bennett, Ethan Bernstein, Gilles
Brassard & Umesh Vazirani [BBBV]. Even though this paper was published
much later, the authors had realized as early as 1995 (a year before the search
algorithm came out) that there was a fundamental limit to how far quantum
parallelism could take us. In fact they proved that no algorithm could hope to

search an unsorted database in fewer than (2 (\/JT/' ) queries. They had given

a lower bound that was precisely matched by my algorithm. [BBBV] was a
truly remarkable result - a rare instance when a non-intuitive lower bound for
a fundamental problem had come even before the algorithm. Most significantly
it has convincingly held firm for the last ten years despite several efforts to find
ways around it. Partly as a consequence of this result, no polynomial time al-
gorithm has been discovered for any of the NP-complete problems. I say partly
because as elaborated in the next paragraph, there is still some hope.
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When quantum computing was first being invented, it was hoped that it
would be able to solve NP-complete problems just through the parallelism of
quantum mechanics. Such a scheme would do a brute force search and would not
need to use any of the structure of these problems. These hopes were dashed in
1995 by the [BBBV] paper, this proved that the best improvement that such an
unstructured search scheme could provide was a square-root speedup. Based on
this result, it is often said that quantum computing algorithms could not possi-
bly solve NP-complete problems. However, it should be emphasized that this is
only true if we look at the NP-complete problem as an exhaustive search prob-
lem. NP-complete problems have considerable structure and there well might
be other more advantageous ways of looking at them. The science of quan-
tum computation is relatively new and there are several unexplored directions.
As described in the interim reports and briefly in this report, we have spent
some time exploring novel algorithms that make use of the power of quantum
mechanics to take advantage of the structured nature of these problems.

This report describes the research that I and my collaborators have con-
ducted at Bell Labs over the last five years. The report is organized as follows:

1. The next chapter describes research into quantum algorithms.

2. Chapter three describes research into quantum communication (some as-
pects of quantum communication are covered in the algorithms chapter,
e.g. distributed computing).

3. Chapter four describes research into physical implementations.
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2 Quantum Algorithms

There were two broad themes to our research in quantum algorithms:

1. Quantum searching and variants.

2. Algorithms for NP-complete problems.

The first theme built on the previous discovery of the quantum search al-
gorithm [1]. This algorithm has proven to be remarkably versatile. Originally
designed for unstructured searching, it has adapted surprisingly well to struc-
tured problems - the foreword mentions some applications [4],[6]. This chapter
mentions some more extensions of quantum searching. The second theme was
speculative, nevertheless, we undertook it as a worthwhile challenge. Research
in both of these topics continues in the second (ongoing) phase of the program.

2.1 Quantum Searching and Variants

The search algorithm showed how to make use of the fact that a quantum system
could simultaneously be in multiple states, to search an unsorted database of

size N in only O (\/]Tf ) steps. The quantum search algorithm is perhaps the

simplest possible quantum algorithm and because of its simplicity and power it
attracted considerable interest from both physicists and computer scientists.

1. Physicists were interested because finally there was a simple scheme that
would clearly demonstrate the power of quantum computing. So far there
have been only two significant applications where quantum computing
gives an advantage over classical computing - factorization and search.
Unlike factorization, in searching there was minimal effort required to set
up the system. As the NMR groups have shown, a demonstration can be
done even on a two qubit system.

2. Computer scientists are intrigued by this algorithm because it had gen-
erally been assumed that in order to achieve any speedup one needed to
make use of the structure of the problem - this is generally true in both
deterministic and probabilistic algorithms, the quantum search algorithm
showed that this clearly was not the case in quantum mechanical algo-
rithms.

3. With the factorization algorithm, no one knows whether or not there ex-
ists a better classical or quantum algorithm. Last year there was a break-
through in a related field when an Indian group discovered a deterministic
algorithm for primality testing. In case there is another breakthrough by
means of which it becomes possible to (classically) factorize numbers in
logarithmic time, interest in the quantum algorithm would quickly van-
ish. That cannot happen with the search algorithm. It has been proved
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2.1 Quantum Searching and Variants

that no algorithm, whether quantum or classical, can ever hope to beat
quantum search for the application of exhaustive searching [3].

4. Finally there is the issue that searching is an application that existing
computers actually spend a substantial portion of their CPU cycles in.
Factorization, though a very important application from a fundamental
standpoint, is probably not going to be of much significance if quantum
computers ever become commonplace [5].

2.1.1 Classical Analog

We show that the quantum search algorithm can be described as a resonance
phenomenon [8]. This opens the scope for implementing the algorithm using
other possible architectures. We suggest one implementation based on coupled
oscillators in a purely classical setting when there are N oscillators, one of
which is of a different resonant frequency. We could identify which one this
is by measuring the oscillation frequency of each oscillator, a procedure that
would take about N cycles. We show, how by coupling the oscillators together
in a very simple way, it is possible to identify the different one in only v N
cycles. Although there have been other classical analogs, they have just copied
the original search algorithm, ours brings out the basic physics of the algorithm
and suggests new applications and interpretations. For example, this yields a
simple explanation for the v/N bound.

The quantum search algorithm has been rigorously proved to be the best
possible algorithm for exhaustive search, i.e. no other algorithm can carry out
an exhaustive search of N items in fewer than O(v/N) steps [3]. The proof for
this is complicated and based on subtle properties of unitary transformations.

Fortunately, in the classical analog, there is a simple argument as to why it
needs O(v/N) cycles.

2.1.2 Scheduling Problem

The scheduling problem consists of finding a common 1 in two remotely located
N bit strings (in case a 1 denoted an available slot for each party, a solution to
this problem could be used for scheduling a meeting between the two - hence
its name). The challenge is to solve this problem with the fewest possible bit-
communication. It has been known for several decades that it is not possible
to solve this classically with fewer than N bits of communication. In 1996,
Buhrman, Cleve & Wigderson [19] were able to apply a version of the quantum
search algorithm to solve this problem with only O(v/N log, N) qubits of com-
munication. We have discovered a new algorithm that works as well as or better
than any known algorithm especially when one of the strings is sparse (i.e. it
has only a few 1s).

Denote the number of 1s in the string with the fewer 1s by eN. Classically, it
needs at least O(eN logy N) bits of communication to find the common 1. The
best known quantum algorithm would require O(v/N) qubits of communication
[13], [11] - it is not obvious how to modify this to take advantage of the sparsity
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2.1 Quantum Searching and Variants

of the strings. We designed a quantum algorithm to find the common 1 with
only O(VeN log, N) qubits of communication using the amplitude amplification
principle (an extension of quantum searching) [9].

2.1.3 Trade-offs in the Quantum Search Algorithm

Quantum search is a quantum mechanical technique for searching N possibilities
in only v/N steps. This has been proved to be the best possible algorithm for the
exhaustive search problem in the sense the number of queries it requires cannot
be reduced. However, as shown in [10] , the number of non-query operations,
and thus the total number of operations, can indeed be reduced. The number of
non-query unitary operations can be reduced by a factor of log N/alog(log N)
while increasing the number of queries by a factor of only (1 + (logN)™%).
Various choices of a yield different variants of the algorithm. For example, by
choosing a to be O(log N/ log(log N)), the number of non-query unitary oper-
ations can be reduced by a third without a single increase in the number of
queries.

2.1.4 Quantum searching for classical objects

It is inevitable that classical computers will have to deal with quantum effects;
this is normally perceived as an obstacle. However we believe that some of the
earliest uses of results from quantum information processing will be in small but
useful applications of quantum effects within a classical computer.

The quantum search algorithm was originally phrased in terms of searching
an unsorted database for a marked item. Clearly such a database would have
to be a “specially constructed quantum” database, and could not be a “regular
classical” database. As such the search algorithm is usually thought in terms of
querying a (specially constructed) quantum oracle. We have recently shown how
to perform a quantum search for a classical object, specifically for a classical
object which performs no coherent evolution on the quantum computer being
used for the search [20].

The simplest example of such a hybrid quantum/classical process can be
understood by considering the case where an opaque object is used to mark
one of N different objects, and we are limited to only a single query. Classi-
cally the probability of correctly identifying the marked item is 1/N. However,
using appropriate beamsplitters we can place a photon in a superposition of
paths corresponding to all N items. In this way the photon queries all items
simultaneously. Another array of beamsplitters can then be used to perform
an inversion about average operation on the photon paths - it is not difficult
to show that our probability of success is now boosted to about 4/N in the
limit of large IN. The following figure gives a detailed calculation of the success
probability after a single query to a 4 item database, here too it gives a constant
factor improvement over the best possible scheme. As mentioned earlier the loss
of the photon due to probing the opaque object limits the success probability.

LUCENT TECHNOLOGIES PROPRIETARY 8



2.1 Quantum Searching and Variants

Quantum Searching a Classical Database
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We have extended this simple one query example, by using interaction free
measurement as a subroutine in the quantum search algorithm. This is nec-
essary, because absorptive loss causes the naive one query procedure discussed
above to become extremely inefficient after several iterations.

In addition to providing a simple example of how non-unitary processes
which approximate unitary ones can be useful in a quantum algorithm, our pro-
cedure requires only one photon regardless of the size of the database, thereby
establishing an upper bound on the amount of energy required to search an ar-
bitrarily large database. Alternatively, our result can be interpreted as showing
how to perform an interaction free measurement with a single photon on an
arbitrarily large number of possible bomb positions simultaneously. The im-
provement we have obtained is only by a constant factor - despite much effort
we have not been able to improve this to a square-root factor (the difference
from the standard search algorithm is that there are losses at every step of the
classical observation which reduces the amplitudes in all states that give any
meaningful information).

2.1.5 Distributed computation

Classical communication and computation have been intricately linked since
the time of Shannon. It is well known that appropriate coding can greatly
facilitate the transmission of data. Similarly, distributing computation among
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2.1 Quantum Searching and Variants

multiple computers can expedite the solution of certain problems for which
the communication needs do not dominate. A similar situation prevails in the
quantum world. Quantum teleportation and quantum cryptography all make
use of the same concepts and framework as quantum computation. Indeed the
quantum technique that gives the best known improvement in communication
complexity as compared to classical, consists of an application of the quantum
search algorithm in a distributed setting to solve the intersection problem.

Terry Rudolph and I worked intensely in this area of quantum communica-
tion complexity for several months. We have been trying to see what classical
computations can be carried out in a distributed setting using entanglement.
In particular our studies have focused on understanding the (entanglement as-
sisted) communication complexity for arbitrary functions, rather than focussing
on specific examples of functions as previous research has done.

Our investigations along these lines have led us into considering a generaliza-
tion of a problem which has received much attention already, namely the min-
imal communication requirements (quantum or classical) under which a given
entangled state can be transformed into another given state. The generalization
we have been investigating, and hope to investigate further, arises when Alice
and Bob hold one a set of entangled states (but they don’t know which) and
they wish to apply some transformation to a different set of entangled states.

To see how this question arises, assume that Alice and Bob initially share
a resource of entangled states. They also each have some data, 4 or zg and
wish to compute f(za,zp). If they each perform some local operations which
depend on their input data, we see that they now hold one of a set of possible
entangled states - although they do not know which one. Their goal is to perform
operations, with as little classical communication as possible, which result in a
different entangled state. This final entangled state we generally envisage being
such that one of the parties can tell, from local measurements, what the output
f(za,zB) is.

We have begun our investigation into this general question, by looking at the
case where Alice and Bob share either the entangled state |¢() or |¢;). They
wish to effect the transformation

o) —  ldo),
) — o),

utilizing as little classical communication as possible. It is well known that if
there were only a single state |1) which they wished to transform into |¢), then
they can do so with no communication if the two states have the same amount
of entanglement. In our only slightly more complex generalization however, no
such simple rules are evident. For example, there exists pairs of initial states
[¥o), |¥1) which are orthogonal and have the same amount of entanglement,
and corresponding pairs |@,), |#;) of final states which are also orthogonal and
which have the same entanglement as the initial states, for which the desired
transformation is not (deterministically) possible with no communication.

We have also made the following rather curious observation, which is a special
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2.1 Quantum Searching and Variants

case of the above but for which we are yet to find a concrete application. Imagine
that Alice and Bob have an unlimited resource of EPR pairs, and that they use
the states |0z,) = |00) + [11) (]1) = |00) — |11)) to encode a logical zero (one).
Note that each of them can set the value of any qubit in the logical basis by a
local operation, no communication is required. We have found that on a series
of N such encoded logical qubits, Alice and Bob can perform an inversion about
average operation (in the logical basis), without any communication. They do
so by performing a phase inversion on the state with all 0’s in the local basis
(either party can perform this phase inversion. This result seems to indicate
that some form of extended party quantum searching might be possible, we
plan to work out the specific communication requirements for this.

2.1.6 How significant are the known collision and element distinct-
ness quantum algorithms?

Quantum search is a technique for searching N possibilities for a desired target
in O(\/N ) steps. It has been applied in the design of quantum algorithms
for several structured problems through the amplitude amplification principle.
Many of these algorithms require significant amount of quantum hardware. In
this paper we propose the criterion that an algorithm which requires O(P)
hardware should be considered significant if it produces a speedup of better

than O (\/1_3> over a simple quantum search algorithm (ignoring logarithmic

factors)[7]. This is because a speedup of O (v/P) can be trivially obtained by

dividing the search space into O(P) separate parts and handing the problem to
independent processors that do a quantum search. Our paper points out the
surprising and previously unobserved fact that: all three known algorithms for
collision and element distinctness [12], [14], [16] exactly saturate the criterion.

2.1.7 Using incoherent ancillas

We have recently noticed that a modified quantum search algorithm works al-
most the same as the original algorithm if the phase inversion step is replaced by
a counting step in which a quantum device counts how many times the system
has passed through the solution state. The advantage with such a structure is
that it does not need to maintain phase matching with the rest of the structure.
In fact, we have found using density matrix calculations that the algorithm still
works even if the counter is not totally coherent.

We also find that this version of the search algorithm, while requiring an
increase in the number of oracle queries (by only a constant factor) is much
more stable with respect to overshooting/undershooting the optimal number of
queries. We are still thinking of applications where this observation would give
a decisive advantage over the standard search algorithm.

LUCENT TECHNOLOGIES PROPRIETARY 11



2.2  Quantum algorithms for NP-complete problems

2.1.8 Quantum algorithm for detecting collisions in invertible func-
tions

Resources required by quantum information systems are quite different from
those required by classical systems. For example, entanglement is a major re-
source for quantum information processing; it is well known that for classical
communication systems, no initialization made prior to transmission can aug-
ment the transmission capacity of a channel. In contrast, through superdense
coding, it is possible to boost the transmission capacity of a quantum channel
by a factor of two if the two parties share prior entanglement.

In this paper we give an instance in computation where a particular feature
of a problem (partial invertibility of the given function) does not contribute any
benefit if we were solving the problem on a classical computer, whereas on a
quantum computer it gives an improvement over the best known algorithm. In
fact, we are able to obtain provably the best possible collision detection quantum
algorithm.

2.1.9 From Schrodinger’s equation to the quantum search algorithm

The quantum search algorithm is a technique for searching a space of size N in
only O (\/N ) steps. Although the algorithm itself is widely known, not so well

known is the series of steps that first led to it, which are quite different from any
of the generally known forms of the algorithm (e.g. inversion about average, two
dimensional rotation in Hilbert space). The quantum search algorithm was first
invented as a discretized version of Schrodinger’s equation [17]. I have found the
insights that led to this algorithm very helpful in the design of other quantum
algorithms, e.g. the algorithms described in: “A framework for fast quantum
mechanical algorithms,” Lov K. Grover, quant-ph/9711043, STOC ’98.

I presented an outline of the original derivation to a small gathering of
theoretical physicists in the Winter Institute on the Foundations of Quantum
Theory, SN Bose Center, Calcutta, India in Jan. 2000. After seeing the interest
it inspired, I decided to write a more complete version, not so much for historical
reasons but with the view of providing a self-contained introduction to quantum
computing algorithms from a different perspective. It has proved unexpectedly
difficult to design fast quantum computing algorithms, a new perspective would
help in this direction.

2.2 Quantum algorithms for NP-complete problems

We investigated how efficiently we could create superpositions that provide in-
formation about the solution of computer science problems more effectively
than classical probabilistic algorithms. The quantum search algorithm has been
shown to be applicable to the synthesis of general superpositions (and hence clas-
sical distributions), however it only gives a square-root advantage over classical
methods. It remains to be seen what kinds of advantage it gives for structured
superpositions. To give an indication of the breadth of possibilities, we mention
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2.2  Quantum algorithms for NP-complete problems

three approaches we have been investigating (several hundred such approaches
have been tried):

Log-concave superpositions It is well known how to classically sample ac-

cording to log-concave distributions (i.e. probability distributions whose
logarithm is a concave function). Unfortunately, it is not known how to
specify an NP-complete problem as that of sampling a log-concave dis-
tribution. Any obvious representation seems to require at least some log-
convexity. We have been able to represent these problems as that of sam-
pling slightly log-convex distributions, i.e. distributions that are slightly
non-log-concave at certain well-defined points in certain well defined di-
rections - everywhere else they are log-concave. This is accomplished by
increasing the number of variables in the problem by a polynomial factor
and having the log-convexity in each of the variables (I invented this tech-
nique independently, very recently I came to know that similar ideas are
known in management science under the name ”latent variables”).
We have recently discovered ways of synthesizing quantum superpositions
corresponding to log-concave distributions (quant-ph/0208112). Also, we
have been able to prove that the magnitudes of the Fourier Transforms of
superpositions that correspond to NP-complete problems are log-concave.
All that remains is to estimate the phase of an arbitrarily specified state
of this superposition. If we can somehow calculate this, we can rotate the
phase of each state appropriately and then Fourier Transform back to get
the original superposition.

Diffusion based algorithms The idea of generating a log-concave superposi-
tion, described in the previous paragraph, has led us to a related class of
algorithms that make use of quantum mechanical principles, but can be
implemented totally classically. The idea is that if we consider the overlap
integral of two quantum mechanical states, it stays invariant under any
unitary operation that is applied to both states. E.g. consider (¢|v), as-
suming ¢ and 9 to be real, this is [ ¢1). We know that the overlap integral
is invariant under a unitary transformation which transforms both ¢ as
well as 1) in opposite directions, i.e. if U is an arbitrary unitary transfor-

mation, then [ (U Tq§) (U) is equal to [ ¢tp. In particular if we let U be

the (1+ ieVQ) operation, which is unitary when ¢ is real and € — 0 , it
follows that [ ¢ = [ (¢ — eVZ¢) (1 + €V%). Therefore the integral of
the product of two functions stays the same if one diffuses forward and
the other backward in time. Note that this diffusion is completely classi-
cal. This simple result has led us to a whole class of possible algorithms
described in the following subsections.

It is possible to represent a distribution whose integral yields the solution
to NP-complete problems, say f(Z), as a product of two simple distribu-
tions f1(Z,0) & f2(Z,0), the integral is invariant when f; diffuses backward
in time and fy diffuses forward in time by the argument of the previous
paragraph. The shape of f1(Z, 0) is critical because it is diffusing backward
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in time. Functions diffusing forward in time get smoothed out, functions
when they diffuse backwards in time become more sharply peaked. The
shape of f1(Z,t) can become very messy if we are not careful about the
initial choice of the function (i.e. f1(Z,0) ). To simplify f1, we choose it
in a way so that it is a bounded function of a small number of variables
which is log-convex at some point in some direction. This is independent
of the problem. The problem specific portion, f2(Z,0), which is a joint
function of several variables, can be chosen to be completely log-concave.

Multiplying through Convolution As pointed out in the previous para-
graph, if we can sample a product of two distributions, we can obtain
distributions that can give the solution of NP-complete problems. Con-
sider the problem of multiplying two functions fi(z) & fz2(x). If one can
convolve the two and then take the Fourier transform of the product, one
can get a function corresponding to the product of the two functions.
Unfortunately, it is non-trivial to create a quantum superposition corre-
sponding to to the convolution of two given quantum superpositions, this
is unlike probability distributions where if we are given two probability
distributions, one just has to shift one distribution by the other to obtain
the distribution corresponding to the convolution. The reason for this
difficulty lies in the fact that it is not easy to shift one superposition by
another.

e In order to see the difficulty, consider two quantum superpositions 1, & 1
in the initial state: ¥, (1) |z1) ® ¥4 (z2) |T2) -

e Shift the second by the first ¥, (z1) |21) ® ¥y(x2) |22 — 21) .

e Fourier transform in second register, this gives 1, (1) |21)®¢q(k2) |k2) exp (ikax1) .
Notice that if the first register did not have the |z1) written, we would
have a superposition corresponding to the product of the Fourier trans-
forms in the second register. This is because the amplitude in the second
would then be

/ by (1) o (ks) exp (ikm1) = b (k)b (k)

(probability will be the absolute square of this.)

e The |z1) register completely changes things. For example, now the prob-
ability in the second register will be added up for each value of x5 :

Probability(k,) =/ ¥y (21) Gy (ka) exp (ikaw1) X (1y (21) do(k2) exp (ikaz1))™ = || o (k)|

The information about the x; register is completely lost.
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2.2.1 Status

We have studied, and are currently studying, various ways of getting around
these problems. Unitary transformations bring about an extremely powerful
set of computational possibilities which we are only learning to harness. We
continue to be optimistic about our progress on NP-complete problems and are
continuing our research into these. We plan to further describe our progress in
a future report.
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3 Quantum Communication

3.1 Introduction & Overview

In the course of this grant we undertook a variety of studies related to issues
in quantum communication. Some of these studies overlapped with our work
on algorithms, and have been reported in the previous sections. The remainder
of our work can be loosely categorized into research focussed on the role of
reference frames in quantum communication, and research aimed at elucidating
fundamental primitives of quantum communication such as state estimation
and state targeting. Portions of the research described in this chapter were
conducted independently by Terry Rudolph when he was at Bell Labs and being
funded by this grant.

3.1.1 Reference Frames

It is generally presumed that when physical systems are being exchanged for the
purposes of communication, the sender (Alice) and receiver (Bob) must share a
reference frame — the precise nature of which depends on the particular physical
systems involved. For example, when communicating via spin-1/2 systems, it
is presumed Alice and Bob must share a spatial reference frame so that they
may prepare and measure spin components relative to this frame. Because both
the exchanged systems and the channels via which they are transmitted should
ultimately be described quantum mechanically, it is natural to examine the
extent to which the laws of quantum mechanics fundamentally necessitate this
presumption.

The question of necessity or otherwise of a shared reference frame (SRF) is
clearly of interest for pragmatic reasons. In general, establishing a perfect SRF
requires infinite communication (i.e., transmitting a system with an infinite-
dimensional Hilbert space !); as such, from a communication theory perspective,
a perfect SRF is a resource that is often quantitatively comparable to the sharing
of an infinite number of correlated classical bits. For example, if the SRF is
secret (known only to Alice and Bob) it can be used by them to securely generate
an arbitrarily long secret key suitable for cryptography 2. In practise, perfect
SRFs are an idealization, and any finite (i.e., approximate) SRF should be
viewed as a quantitative physical resource.

In section 3.2 below, we report on our work aimed at providing a frame-
work for tackling problems regarding the amount of communication required
to establish spatial reference frames. In particular we show how to use a vari-
ant of the quantum search algorithm to facilitate establishment of a reference
frame. Our scheme makes no use of entanglement in order to achieve efficiencies

!For example, establishing a shared direction or Cartesian frame in space can be accom-
plished to any desired accuracy by transmitting quantum systems [2, 3], with an associated
communication cost.

28pecifically, in the case of a shared Cartesian frame, then Alice can generate a random
classical key, determine a direction from it (i.e., angles 0, ¢) and send a physical system aligned
in this direction to Bob.
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comparable to much less practical 1-way communication schemes which require
large amounts of entanglement.

Along with requiring communication to establish, quantum mechanics dic-
tates that finite SRFs necessarily drift [4] and thus are intrinsically depleted
over time. Moreover, for the case of conserved quantities such as angular mo-
mentum, measurement of non-orthogonal states inevitably causes disturbances
to the measuring apparatuses (by the Wigner-Araki-Yanase theorem [5]), again
depleting the SRF. We also note that shared prior entanglement, a valuable
resource in quantum information theory, can be consumed to establish SRFs
[6].

In section 3.3 below we report on our work showing how the implicit as-
sumption that SRF’s are necessary for quantum communication is in fact quite
wrong. By appropriate encoding of quantum information in the relative proper-
ties of the transmitted qubits, asymptotically perfect communication is possible
even in the complete absence of SRF’s.

Finally in section 3.4 we report on how the vacuum can be used as a resource
for quantum communication, if two observers share a global position reference
frame (by making use of the Unruh effect).

3.1.2 Primitives of quantum communication

A fundamental primitive of quantum communication is state estimation. This
primitive encompasses a wide variety of tasks undertaken by the receiver of
quantum systems under circumstances wherein she has only partial information
about the state of the systems in question. In section 3.5 below we report on our
work elucidating the problem of unambiguously discriminating mixed states, a
task we were the first to realize was possible.

A second fundamental primitive of quantum communication is state target-
ing (sometimes known as state control). This primitive encompasses a wide
variety of tasks undertaken by the sender of quantum system - many tasks have
obvious duals to those of state estimation. We were the first to realize the ex-
istence of this important primitive. Section 3.6 below reports on our work on
this primitive.

3.2 Direction Finding using Quantum Searching

The amplitude amplification transformation may be expressed in the form:
UILLU'I, . Visualize U and U~! as the transformation from Alice’s to Bob’s
reference frame and vice-versa. Then the transformation UI,UT I, is equivalent
to taking a particle from Alice’s frame to Bob’s frame; inverting its phase in
Bob’s frame, going back to Alice’s frame, inverting its phase in this frame and
so on. As can be seen by a simple quantum search type analysis, this transfor-
mation has the effect of increasing the phase rotation angle of the particle that
depends on how misaligned the axes of the two frames were. This provides a
means for estimating the angles between the two reference frames.[20]
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In a large quantum computer or in quantum communication, for states
and operations to be well defined we presume the existence of perfectly aligned
frames of reference. In reality such frames require resource overhead in order
to establish. In a large quantum computer or in quantum communication, for
states and operations to be well defined we presume the existence of perfectly
aligned frames of reference. In reality such frames require resource overhead in
order to establish. We undertook a rather novel analysis of the communication
complexity of establishing a shared reference frame (SRF).

Quantum physics allows for powerful new communication tasks that are
not possible classically. Such quantum communication tasks generically require
one party to prepare systems in well defined quantum states, and send these
systems to another party. Since the states used are generally defined only with
respect to some sort of reference frame, a perfect shared reference frame (SRF)
between both parties is normally presumed. In general, however, establishing
a perfect SRF requires infinite communication (i.e. transmitting a system with
an infinite-dimensional Hilbert space, or an infinite number of systems with
finite-dimensional Hilbert spaces).

In quantum communication theory, the specific physical systems being ex-
changed determine the type of reference frame that the communicating parties
must share; conversely, the ability to exchange physical systems generally al-
lows for certain reference frames to be established. For example, in order for
two parties to agree on the superposition «| 1)+ 8| | ) of a single spin-1/2 sys-
tem, they must share aligned spatial axes; conversely, by exchanging spin-1/2
systems they can establish aligned spatial axes.

The problem of using spin-1/2 systems to establish either a single direction
in space or an orthogonal trihedron (xyz-axes), has received considerable atten-
tion [3, 4, 5, 6, 3, 8]. In particular, the following standard scenario has been
studied in depth: Alice sends Bob N spin-1/2 particles in a state which encodes
some spatial direction 7 4. Bob performs a measurement on the N spins, which
results, with probability P(7.|74), in an estimation 7, of the direction 7 4. The
fidelity F' of the estimation is defined as %(1 + 7l - T4), and the goal is to op-
timize the expected fidelity, F', with respect to initial states prepared by Alice
and measurements performed by Bob, for uniformly chosen 74. (Note that a
random guess of direction has an expected fidelity of 1/2; a fidelity of O corre-
sponds to an estimate antiparallel to 7i4). In general it is found that if Alice
sends Bob the systems in a tensor product of pure states, then F™a% = 1 —O(%),
while if Alice prepares entangled states then F™a* =1 — O(#) In both cases
the measurements Bob must perform to achieve this are joint (i.e. entangled)
measurements over the IV particles, and in general they are positive operator
valued measurements (POVM’s) as opposed to standard Von-Neumann projec-
tion valued measurements (PVM’s).

We have expanded the study of procedures for establishing SRF's, by demon-
strating the wealth of nontrivial possibilities which remain to be explored. We
show that by considering multi-round communication scenarios, it is possible to

achieve a worst case fidelity of F =1 — O(%Z—N), which is within a logarith-
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mic factor of the best average case fidelity obtainable in the standard scenario.
Moreover, in contrast to the standard scenario procedure which achieves this
best average case fidelity, the protocol that we propose makes no use of entan-
glement - either in the states that must be prepared or in the measurements
that must be performed! We feel this is of great pragmatic importance, since
if Alice and Bob had the ability to create and exchange the arbitrarily large
entangled states, and perform the arbitrarily large joint measurements required
within the standard scenario, then in most situations they would be far better
off to use the ideas presented in the next section of this report [9] - wherein it
is shown how they can perform quantum communication perfectly (i.e. without
having noise due to the finiteness of the SRF) and with asymptotically no loss
of resources.

In addition to the heavy use of entangled states and measurements, there
are several other ways in which the standard scenario (and the extension of it
in which Alice and Bob align an orthogonal trihedron as opposed to a single
direction) is somewhat unsatisfactory. For a start, the particular choice of cost
function (e.g. the fidelity) has a strong bearing on what the optimal states and
measurements turn out to be [6]. Secondly, the optimizations are performed for
the average case scenario, and not the worst case scenario, which is arguably
more interesting (and which is the norm for evaluating communication costs).
This yields the difficulty that if we wish to ask questions pertinent to future
quantum communication using spatial axes aligned under such procedures, it
is somewhat problematic to translate these results into standard properties of
the quantum channel. This in turn makes it difficult to determine the extent to
which such communication overhead can be amortized. The standard scenario
also ignores the question as to whether allowing backwards communication (from
Bob to Alice) can improve their ability to align their reference frames. Finally, in
quantum communication scenarios it is natural to presume that Alice and Bob
have access to both classical and quantum channels, and to examine the extent
to which classical and quantum communication can in some sense be traded off
against each other. Peres has raised some interesting questions about classical
communication costs within the standard scenario [10], although within this
scenario, from a communication theory perspective, one may generally assume
that such costs are amortized into the definition of the protocol. Below we
will give some simple examples of protocols for which such amortization is not
possible.

With a view to rectifying some of the shortcomings of the standard scenario
mentioned above, we consider strategies for aligning spatial reference frames
that allow Bob, within a worst case scenario, to directly determine the Euler
angles which relate his and Alice’s axes. More precisely, if  is an Euler angle
relating Alice and Bobs’ axes, and @’ is the estimation of 8 inferred by Bob, then
we will be interested in the amount (and type) of communication required for
protocols that achieve Pr[|0 — 6| > 6] < ¢, for some fixed €, > 0. By setting
§ = 1/2**1 we say that with probability (1 — €) Bob has a k bit approximation
to 6.

The simplest protocol we have been able to find for determining the Euler an-
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gles {¢, 0,1} in a worst-case scenario is as follows. Unless otherwise indicated by
a superscript A, all states and operators are written in Bob’s frame of reference.
We define the Euler angles such that the rotation matrix describing the change
from Alice to Bobs’ frame of reference is given by R = e~#7=/2¢=00y/2¢=i¢0/2,
Explicitly,

—_et?gi
_ i)/ cos6/2 —€'?sin /2
E=e ( —e¥sinf/2 et cosh/2 |-

Let 0 = nT, where 0 < T < 1 has a binary expansion 7' = 0 - t1t5.... The
protocol we propose involves Alice and Bob following an iterative procedure
which determines the bits ¢1, t up to tx independently. We choose the proba-
bility of error for each bit of T to be €/k, so that after finding the first k bits of
T the total probability of error is 1 — (1 — ¢/k)* <e.

To find t;, Alice sends a single spin polarized in her z direction, and Bob
measures it in his +z basis. The measurement by Bob yields the outcome 1 (spin
down say) with probability: P, = cos? § = 1[1 4 cos2rT] = £[1 + cos(2m 0 -
tite ...)]. Repeating this n times, Bob obtains an estimate Pj as to the true value
of P, and thus an estimate T” of the true value of T. If we choose n (details
below) such that |P; — Pj| < 1/4 with probability (1 —e/k), then |T—T"| < 1/4
with the same probability, and this implies that T” agrees with T to at least the
first bit ;.

The procedure is readily generalized by more exchanges, in order to find 6
to more bits of precision, the details can be found in the paper cited above. The
total amount of qubit communication required to obtain bits ¢; through t; by
this procedure is

k
N=nxY 27" =n(2* - 1) = 02" In(2k/e)).

Note that, since we determine the bits of 7" independently with this protocol, the
number of rounds of communication can be reduced by running the procedure
in parallel. In order to obtain the other Euler angles accurate to k bits, or,
for that matter, to fix a direction in space with 6, ¢ angles fixed to k Dbits,
we can extend this protocol by changing the transformations that Alice and
Bob perform (and/or the initial state Bob prepares). This only increases the
communication overhead by a constant factor.

It is useful to understand our protocol in quantum computational terms. In
effect, Alice and Bob are performing a combination of a distributed quantum
search algorithm [13] and a phase estimation algorithm [14]. In a quantum
search algorithm, a generic transformation of the form (I;R'I3R), where R is
an arbitrary unitary transformation and Iy, I are phase inversions about source
and target states, is repeated some large number of times in order to coherently
drive the state of the computer. Here we are performing a similar procedure,
where the computer is now only a single bit, the phase inversions are Alice and
Bobs’ local o, rotations, and the unitary transformation R is passively provided
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by their lack of a SRF. We may also interpret this procedure as one in which
the eigenvalues of U are being ‘quantum computed’ - in fact there is much in
common here with Kitaev’s version of the quantum phase estimation procedure
[15].

A more general distributed quantum computation would require Alice and
Bob to create entangled states. Without a SRF, however, this is at first glance
problematic - since pure entangled states in Alice’s frame are generally mixed in
Bob’s frame. A possible resolution is for Alice and Bob to use the encodings of
spin states presented in [9]. Such encodings allow for three entangled spin-1/2
particles to form logical qubit states, {|0z ), |11 )} which are not reference frame
dependent. As such, Alice and Bob could, for instance, run the more stan-
dard phase estimation algorithm [16], which involves using the discrete fourier
transform to obtain the best k bit estimator of the eigenvalue(s) of a unitary
transformation.

It is an open question whether the ability to exchange classical information
ever helps in reducing the amount of qubit communication required. It does, as
remarked upon in the introduction, facilitate certain types of protocols in which
entanglement might be “traded in” for a reference frame. We leave the reader
with the following related and important question: To what extent does sharing
of one type of reference frame (e.g. synchronised clocks) facilitate in establishing
a different type of reference frame (e.g. aligned spatial axes). Surprisingly, it
seems that in some cases such facilitation is possible. Consider, for example, the
case when Alice and Bob have synchronised clocks and thus can quantum com-
municate perfectly using two (possibly degenerate) energy eigenstates {|e1, |es }
of some system. They can use a register of these qubits to take the place of the
“logical qubits” discussed above in the phase estimation procedure. Since each
logical qubit required three spin-1/2 particles, this results in at least a constant
factor improvement in the total amount of qubit communication required.

3.3 Communication without shared reference frames

We have shown that both classical and quantum communication can be per-
formed without first establishing a SRF by employing entangled states of mul-
tiple qubits. We prove that, without any prior SRF, the minimum number of
qubits required to transmit a classical bit of information is two, and that four
qubits can transmit an encoded “logical” qubit. Allowing increasingly more
qubits to be entangled improves these ratios, and we prove that communica-
tion of one classical bit per transmitted qubit or one logical quantum bit per
transmitted qubit can be achieved asymptotically. [21]

Our results provide the first link between decoherence free subspaces - an
active area of study in quantum computation, and quantum communication
theory. We now illustrate our results with the simplest examples:
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3.3.1 Classical Communication

The following communication protocol illustrates the general idea for classical
communication. Alice sends Bob the antisymmetric state | ) to communicate
b = 0 and any symmetric state for b = 1. Bob then performs a projective
measurement onto the antisymmetric and symmetric subspaces and will recover
b with certainty. Thus, using this protocol, Alice can communicate one classical
bit to Bob for every two qubits sent, thereby obviating the need for a SRF.

The efficiency of the scheme can be increased by entangling more qubits.
Consider the transmission of N qubits; the superoperator £y that describes
the lack of a SRF acting on a general density operator o of N qubits is given
by En(o) = [dQR(Q)-- -RN(Q)oRI(Q) - - R}LV(Q) This “collective” tensor
representation of SU(2) on N j = 1/2 systems (i.e., R(Q) € SU(2) acting
identically on all qubits) can again be decomposed into a direct sum of SU(2)
irreps, each with angular momentum quantum number j ranging from 0 or 1/2
to N/2.

We have, in fact, been able to prove:

Claim: The maximum number of classical messages that can be perfectly
transmitted without a SRF is equal to the number of SU(2) irreps in the direct
sum decomposition (denoted cWN )). Using standard group theory, the number
of classical bits that can be transmitted per qubit using the above scheme is
N~1log, C®™) | which tends asymptotically to 1 — %. Thus, in the large NV
limit, one classical bit can be transmitted for every qubit sent. Remarkably,
this rate is equivalent to what can be accomplished if they do employ a SRF.

In general, the states to be transmitted in the optimal scheme for N qubits
are highly entangled. (They include, for example, singlet states of N qubits.)
Such multipartite entangled states are difficult to prepare in practice. However,
it is clear that for the case N = 2 the required entanglement is easily achieved
in quantum optics, in particular in the polarization degree of freedom.

3.3.2 Quantum Communication

At first glance, the requirements on any SRF are more stringent for quantum
communication utilizing non-orthogonal states and operations than for analo-
gous classical communication. For instance, communicating a classical bit using
a single spin-1/2 system requires Alice and Bob to agree only on a z-direction:
Alice prepares a qubit in an eigenstate of L, encoding this classical bit, and Bob
then measures L, obtaining the desired bit. For quantum communication, su-
perpositions of such states would require a shared Cartesian frame in order that
the relative phases in the superposition be well defined. In fact, it was argued
in [9] that such SRF's are a necessary, hidden cost of quantum teleportation; our
results show this claim is erroneous.

Despite the decohering effect of the superoperator £y describing the absence
of a SRF logical qubits can be encoded into the transmitted qubits in such a
way that the encoded quantum states are preserved even without an SRF. It is
useful to treat £y as a decohering channel that describes a collective decoherence
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mechanism acting identically on all qubits, and so we appeal to the techniques of
decoherence free subspaces (DFS’s) [10, 11]. For N (even) transmitted qubits,
we observe that the superoperator £y leaves all j = 0 states in the direct sum
decomposition invariant. Thus, the j = 0 states span a DFS, denoted Hpps.
The number of j = 0 states is given by the multiplicity

N 1
dim Hppg = ¢ = — . 1
Hi HDES = G N/2)Nj2+1 M
For N = 2, there is only one j = 0 state: the Bell state [¥~). For N = 4, there
are two distinct j = 0 states, and thus four physical qubits can encode a single
logical qubits as follows:

02) = 5(|01)12 — [10)12)(|01)34 — [10)34)

1) = 75(|0011) 1234 + [1100)1234) — 505 (|01)12 + [10)12)(|01)34 + [ 10)34)
where {|0),|1)} is any orthogonal basis for the single qubit Hilbert space. The
superoperator £y preserves the two-dimensional subspace spanned by these
states, i.e., this subspace is a DFS. Single-qubit operations on this logical qubit
are an encoded representation of SU(2) that commutes with the tensor repre-
sentation generating the superoperator £y. The encoded generators are given
by Hermitian exchange operations (i.e., two-qubit permutations), which clearly
do not require a SRF; for details of the encoded SU(2) group as well as two-
logical-qubit coupling operations, see [10, 11].

Thus, a logical qubit can be encoded into four physical qubits 3. Asymptot-

ically, the number N~!log, c(()N) of logical qubits encoded per physical qubit in

N physical qubits using DFSs behaves as 1— 31‘;%\2, N which approaches unity for
large N. This remarkable result proves that quantum communication without a
SRF is asymptotically as efficient as quantum communication with a SRF, and
is the communication analog of the “asymptotic universality” proven in [11].

Many interesting questions remain. For instance, we have considered only
situations where local SRF's are generally presumed necessary. However, for sce-
narios involving position-momentum entanglement it appears that global shared
coordinate systems are required. We have also limited our discussion to non-
relativistic quantum mechanics; given the ubiquitous nature of reference frames
in relativity, it may be advantageous to examine similar questions in a relativis-
tic context.

3.4 The vacuum as a communication resource

Entanglement is in the eyes of the beholder. Unitary transformations that affect
the definition of one’s systems change, in general, the amount of entanglement
in a given state. For instance, the Lorentz transformation of the spin degrees of
freedom of a particle depends on its momentum. Thus the entanglement between

3Using decoherence free subsystems, it is possible to encode one logical qubit into three
physical qubits [11].
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the spin and momentum of a particle is not a Lorentz-invariant concept [1]. One
observer may see a product state, while another believes there is entanglement.
For another example, take a state containing a single circularly polarized photon.
When written in terms of linear polarization, this state becomes [0)|1) + |1)|0),
which seems to be maximally entangled (for more such examples see [2]). In
both these examples, however, the apparent entanglement is always local. As
such, it cannot be used for any nontrivial quantum communication protocols.

Here we discuss a well-known phenomenon that does produce nonlocal en-
tanglement, the Unruh effect. It involves just the vacuum, and the unitary
transformations arise when one describes accelerating observers. We investigate
which, if any, quantum communication protocols could be implemented using
this resource.

3.4.1 The Unruh effect

Suppose Alice is accelerating at a uniform acceleration a. As is well known
[3], she will perceive the Minkowski vacuum state (of, say, the electromagnetic
field) as a mixed thermal state with equivalent temperature kgT = ha/(27c).
Since the transformation from an inertial to an accelerating frame is unitary,
however, the vacuum should be transformed into a pure state, not a mixed state.
Indeed, the state of the modes inside Alice’s event horizon only appears mixed
because it is entangled with modes that lie outside that horizon. More precisely,
each mode is entangled with one “mirror” mode, a mode propagating along a
trajectory that is the mirror image relative to the appropriate event horizon.
For each pair of mirror modes of frequency w’ (as measured by the accelerating
observers), the entangled state is in fact a two-mode squeezed state of the form

0) = V1- 2 u*n)|n), 2

where p = exp(—nw’c/a). Mirror modes are the appropriate modes for an ob-
server Bob accelerating uniformly at the same acceleration a but in the opposite
direction along a trajectory that is, again, a mirror image relative to the same
event horizon.

The Unruh effect can be understood by considering the transformation be-
tween creation and annihilation operators from Alice’s frame of reference to that
of a Minkowski observer, Mork. The transformation is of the form

o = (a—pal)/\/1—p?

i = (a—pa)/V1-p2 (3)
where we absorb irrelevant phase factors in the definitions of the mode operators.
Here we use notational conventions that primed operators and variables corre-
spond to accelerating observers, and that operators with a tilde correspond to
mirror modes. The modes here are assumed to be localized wave packet modes,
as constructed in [4]. The fact that a creation operator appears in the trans-

formation of an annihilation operator, distinguishes (3) from standard unitary
transformations of modes [2].
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3.4.2 Quantum communication protocols

The questions we consider now are (7) what useful quantum information tasks
might Alice and Bob perform with the entangled state (2)? (ii) how does the
Minkowski observer Mork describe their actions and makes sense of it? After
all, according to Mork, Alice and Bob share nothing but the vacuum and are
causally disconnected, and so it may seem they should not be able to perform any
interesting protocols. We will consider several quantum information processing
protocols that are known to rely on entanglement and discuss to what extent
they can be implemented by Alice and Bob.

Concerning question (7), there is an important distinction between two types
of quantum communication protocols: those that terminate with at least one
party holding a quantum state, and those that terminate with all parties hold-
ing purely classical information. In the former case the desired quantum states
typically exist only in the eyes of Alice and Bob, and thus, in the scenarios con-
sidered here, only as long as they keep accelerating. Clearly this does not allow
Alice and Bob to ever communicate, not even classically. This does restrict at
least the usefulness of the protocol and sometimes it prevents the protocol from
being executed at all. In the latter type of protocols, however, Alice and Bob
are both free to decelerate after having performed the required quantum oper-
ations (since we presume, hopefully correctly, that classical information, unlike
quantum information, is not affected by deceleration), and thus may thus com-
municate afterwards. This then leads, apart from practical considerations, to
useful implementations of certain quantum protocols. Our primary goal here is
to discuss in detail an example of each type, to demonstrate both the poten-
tial and the limitations of vacuum entanglement for quantum communication
protocols. We also briefly mention various other protocols.

Concerning question (#) we note that Alice’s and Bob’s local operations
appear nonlocal to Mork, and vice versa. The parameter u, which measures the
strength of the Unruh effect and the amount of nonlocality, written in Mork’s
coordinates is equal to (using Ref. [4]) p = exp(—w2D/)), where D is the
distance between the mirror trajectories and A the wavelength. In order to
have any appreciable effect, at the moment Alice and Bob wish to use their
entanglement, they must be within a distance D ~ \/7? of each other, that is,
within the coherence length of the vacuum fluctuations[9]. This is how Mork
can make some physical sense out of the nonlocal character of Alice’s and Bob’s
actions and of the fact that, counter to Mork’s expectations, some of their
protocols seem to work!

We examined teleportation as viewed by both Unruh and Minkowski ob-
servers. Another interesting protocol we examined was a two-party protocol
known to be impossible within the standard paradigm, namely (strong) coin

flipping;:
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3.4.3 Secure coin flipping

Two-party cryptographic protocols involve two antagonistic parties, Alice and
Bob, who wish to complete some information processing task. In classical in-
formation theory it has been proven that no two-party protocols exist which
have “information theoretic” security. In quantum cryptography protocols do
exist with various degrees of quantum information theoretic security, and thus
examining these protocols provides a readily quantifiable way of distinguishing
classical from quantum information theory.

It is standard to assume in two-party quantum cryptography that the initial
state of systems held by Alice and Bob is separable, i.e. of the form |0) , [0) 5.
However it is interesting to note that if Alice and Bob share prior trusted entan-
gled states then some (otherwise impossible) arbitrarily secure quantum crypto-
graphic protocols become possible, while others remain impossible. For example,
if they share a maximally entangled state of two qubits, then an arbitrarily se-
cure coin flip is trivially possible - the coin flip outcome is simply the result each
party obtains by measuring their half of the entangled pair in an orthogonal ba-
sis. By contrast, as can be deduced from [11], the sharing of a prior trusted
entangled state does not give Alice and Bob the ability to perform an arbitrar-
ily secure bit commitment. Thus there is an intricate hierarchy of the security
obtainable in these protocols with respect to any initially trusted entanglement
resources.

What we are proposing here is that the (Minkowski) vacuum state |0) , |0) 5
can also be considered a “prior trusted” state. Since, as discussed above, this
is in fact also a (Rindler) entangled state, we surmise that it can, in fact, be
used to implement a secure coin flip. It has been shown by Kitaev, that within
the standard quantum communication paradigm wherein Alice and Bob start
with a state of the form |0) , |0) 5 and build up an entangled state via rounds of
communication, all coin flipping protocols satisfy (1/2 + €5)(1/2+ €%) > 1/2,
b= 0,1 where 61,)4, p are the biases achievable by Alice and Bob.. Thus, arbitrarily
secure quantum coin flipping within this paradigm is impossible. (The best
known protocols do not even saturate Kitaev’s lower bound).

We should emphasize that in two-party cryptographic protocols there is a
basic presumption that each party feels secure about their own laboratory. In
fact, it is desirable that this need be the only thing they feel secure about - i.e.
we presume that the parties should not have to feel secure about things outside
their own lab.

The protocol we proposed is as follows:

Unruh based coin flipping:

An instance of the protocol is specified by a point in space-time
(X,T), chosen to be located in Alice’s lab, and at time ¢ = 0 Alice,
who is uniformly accelerating with acceleration a, is instantaneously
at rest. At time ¢ = 0 and position z = X — ¢T" Alice turns on and
then off a detector (D;), and verifies the initial state is Minkowski
vacuum (see Figure). At (X,T') Alice turns on a detector Ds, if she
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Figure 1: Relativistic quantum communication is achieved by means of the
Unruh effect.

records a photon then the outcome of the coin flip is 1, otherwise it
is 0. Bob follows the “mirror trajectory” and employs a “mirrored
procedure” to Alice, such that he is detecting the other half of the
Unruh entangled state.

The above protocol is, to say the least, slightly unconventional. However,
intuitively speaking, it is simply relying on the fact that what Minkowski ob-
servers consider to be a separable vacuum state |0) 4 [0) 5, transforms to the
entangled state (2) for accelerating observers. The purpose of the first detector
measurement at time ¢ = 0 is to ensure that the mode k (see Fig. 1) which
will determine the coin flip outcome is in the correct Minkowski initial state.
(A cheating Bob could have his friend try and populate this mode prior to it
entering Alice’s laboratory, for example).

Several other technical issues arise. Clearly a must be chosen to ensure
that the probability of detector Do registering 0 photons is the same as that
of registering one or more photons — i.e. such that u? = 1/2. We also wish
this detector to be sensitive to a localized, travelling Unruh wavepacket. A
formal quantization of Rindler space in terms of such modes can be found in
[4], and from these results one can infer the appropriate detector mode function
responses required.

We conclude with a few observations. Firstly we must assume that Al-
ice’s laboratory is large enough to contain both detectors at the appropriate
space-time points. (Alice does not, however, require other guarantees about the
whereabouts of Bob). Also, the further Alice and Bob are apart, the larger the
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acceleration has to be. Thus there are nontrivial trade-offs between the various
physical requirements of such a protocol.

Certain two-party quantum communication protocols that require entangle-
ment can be performed with just the vacuum. Typically, protocols whose goal
it is to produce a quantum state will not work in any useful way, but two-party
protocols aimed at establishing purely classical information may work. In par-
ticular, unconditionally secure coin flipping is possible, so is unconditionally
secure key distribution. On the other hand, teleportation is only possible in a
weaker version.

3.5 Unambiguous discrimination of mixed states

Although the optimal procedures for discriminating between sets of pure states
have been much studied, it is not generally appreciated that mixed states may
also be unambiguously discriminated. In fact one sometimes encounters claims
to the contrary in the literature. However this is only true if the two mizred
states have the same support.[22]

There have, in fact, been some rather complicated extensions of the pure
state discrimination problem, such as “state comparison” [17], and the prob-
lem of distinguishing one pure state given three possible initial states [18]. In
fact these problems are just different versions of the more general problem of
unambiguously discriminating two mixed states pg, p;.

More precisely, we seek the optimal three outcome POVM, {Ey, E1, E-}
which satisfies

Tr(poEr) = 0 = Tr(p1 Eo) (4)

and which maximizes the probability P of successful unambiguous discrimina-
tion:
P = woTr(pyEo) + wiTr(py E1), (5)

where wy, w1 are the prior probabilities. Clearly unambiguous discrimination
is not possible if the supports of the two density operators are identical. We
assume therefore that supp(p,) # supp(p;)- In particular, we denote the kernel
of p, by Kp (b=0,1). It is also clear that any intersection of Ky and K; is
not useful for the purposes of discriminating p, and p; - we need be interested
only in the part of Ky which lies in the support of p; for example. As such
we presume that Ky and Xy are defined in supp(p,) U supp(p;); they have null
intersection. A necessary and sufficient constraint for satisfying Eq. (4) is that
the POVM element Ej have support only in the subspace Kj., b = 0,1 The
remaining constraint to be satisfied while optimizing (5) is that the operator
E-be positive, that is
I—FEy—FE; >0. (6)

Although we do not have a general solution to this problem, we have been
able to obtain upper and lower bounds which numerical studies indicate are
quite stringent.
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Lower bound for unambiguous discrimination between any two mixed
states 'We consider a strategy that achieves UD of an arbitrary pair of mixed
states and which is strongly dependent on the geometrical relationship between
the two subspaces Ky and ;. We have been able to prove:

Theorem Consider two arbitrary mized states p, and p;. Denote the dimen-
sionality of their kernels, Ko and K1 by mo and r1, and assume that o > 7.
There exist orthonormal bases {|k})}i2, for Ky(b = 0,1) such that for 1 < j <
ro, 1 <i <7y, o

(kp|k1) = dij cos(6;),

where the 0; are the canonical angles between Ko and K1 [19]. In this case, the
expression

P = Z PX(1k5)s k7)) + Z (K o1 |K3) ()

j=ri+1

forms a lower bound on the maximum probability of discriminating unambigu-
ously between p, and p,.

The eigenbases for the POVM achieving this lower bound are simply the
vectors |ki). In order to understand the geometry of the eigenbases for the
POVM elements in this lower bound, it is helpful to realize that the canonical
angles 6; form the unique geometrical invariants describing the relationship
between two subspaces. They can be defined iteratively: 6y is the smallest
angle between any pair of vectors drawn from Ky and Ki, and |k}), |k}) are
the corresponding pair of vectors. 65 is the smallest such angle after these two
vectors are removed, and so on. In this way, one obtains a simple geometrical
picture of the measurement achieving the lower bound.

An upper bound for unambiguous discrimination between any two
mixed states The upper bound is

wmax

prax < 1- 2V’LU0’U.)1F(p0,p1) if F(pOapl) <
T | Wmax(1 — F(pg,p1)?) otherwise

where F(pg, p1) = T |\/Po\/P1| is the fidelity. In the case of equal prior proba-
bilities, the upper bound has the simple form P™2* <1 — F(pg, p1)- Numerical
studies of rank 2 mixed states in a 4 dimensional Hilbert space indicate that
even for randomly chosen p; and p;, our upper and lower bounds are generally
very close.

We have also shown that our lower bound reproduces ezactly both the
Chefles-Barnett result and the Sun-Bergou-Hillery result mentioned previously,
by a much simpler analysis. We have no counterexample showing that our lower
bound is not, in fact the optimal procedure for unambiguously discriminating
two mixed states.
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3.6 Optimal estimation of relative quantum information
[23]

Observers within QM are generally presumed to measure physical quantities
by means of classical apparatuses. Such devices are fixed with respect to a
particular frame of reference, about which the observer has complete knowledge.

From a general perspective there are compelling reasons to go beyond this
standard paradigm into one in which we treat all systems, including the mea-
surement apparatuses, within the framework of QM. The first is internal consis-
tency: Reference frames (which often form part of the measurement apparatus)
and measurement devices are themselves constructed with physical objects, and
thus should be describable with the framework of the theory itself. The second
is more philosophical: If one accepts the generic validity of a principle underly-
ing General Relativity, namely that the primitives of physical theories should be
phrased in purely relational terms, then quantum states should be examined and
understood within the context of their relationship to the physical apparatuses
with respect to which they were prepared.

We have argued in the introduction that from the more specialized perspec-
tive of quantum information theory, the finite nature of reference frames is a
subject of great interest, for both pragmatic and conceptual reasons. Such ref-
erence frames form a resource; they are a type of physical correlate with close
analogies to entanglement. For instance they are consumed with use, and they
cannot be established by local operations and classical communication.

A fundamental primitive of quantum information theory is state estimation.
All previous studies of state estimation have worked within a restricted para-
digm wherein the states are both prepared and measured with respect to perfect
external classical reference frames. In this work we begin the process of exam-
ining a more general problem - state estimation of relative parameters of two
uncorrelated (i.e., unentangled) physical systems, the states of which have small
variance in the relevant degree of freedom. Estimation tasks for such an example
include estimating the distance between two minimum uncertainty wavepack-
ets of a massive particle, or the phase between a pair of coherent states of the
electromagnetic field, or estimating the angle between the directions defined by
a pair of SU(2) spin coherent states. It is this last example which shall be the
focus of this section, although our results apply to a larger class of states, and
our approach can be applied to other variables.

One scheme for measuring relative quantities is to measure each system inde-
pendently with respect to an external RF, e.g., to perform an optimal estimation
of each spin direction and to then calculate the angle between these estimates.
We prove that such (local) schemes are not optimal. In fact, we find that pos-
sessing an external RF provides no advantage. On the other hand, the ability
to perform non-local measurements is necessary to achieve the optimum. How-
ever, it is clear that measuring a single spin against a classical reference frame
does not involve a non-local measurement. We resolve the apparent conflict, by
showing that in the limit of one spin becoming classical, our optimal relative
measurement gives the same information gain as does the optimal measurement
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for estimating a single spin’s direction relative to a classical RF, and that the
need for non-local measurements disappears. These results contribute to our
understanding of how the macroscopic systems that act as RFs can be treated
within quantum theory, and more specifically how global degrees of freedom,
which are defined relative to a classical RF, can be treated as a relative ones
between quantized systems. Such an understanding is likely to be critical for
quantum gravity and cosmology, wherein all degrees of freedom are expected to
be relative.

3.6.1 Two spin-1/2 systems

The simplest example of relative parameter estimation arises in the context of
a pair of spin-1/2 systems. Alice prepares the product state |n;) ® |ng), where
|n) is the eigenstate of J - n with positive eigenvalue (note that every state of
a spin 1/2 system is an SU(2) coherent state). Bob’s task is to estimate the
relative angle o = cos~!(nj - n2) given no knowledge of the global orientation of
the state. Because the joint Hilbert space decomposes intoa J =0anda J =1
irrep, the optimal POVM has the form {II4,IIg}, where II4 = |¥~)(¥ | is the
projector onto the antisymmetric (J = 0) subspace and IIg = I — II,4 is the
projector onto the symmetric (J = 1) subspace. The conditional probability of
outcomes A and S given « are simply p(Ale) = Tr(Ilap,) = 3 sin®(a/2) and
p(S|a) = 1 — p(A|a). The average information gain and the optimal guess for
the value of o depend on Bob’s prior over a.

If we consider a uniform prior for each system’s spin direction, the prior
over o is p(a) = 1sina. This implies posteriors p(a|A) = sin?(a/2)sina and
p(e|S) = 3(2 — sin®(/2)) sina which are peaked at 27/3 and 0.4094r respec-
tively. It follows that these are the best guesses for the angle a given each
possible outcome. Using the posteriors, we find I4 ~ 0.2786, Ig ~ 0.02702,
which yields I, ~ 0.08993. Less information is acquired than in the parallel-
antiparallel estimation problem, because angles near w/2 are more difficult to
distinguish.

3.6.2 One spin-1/2, one spin-j system

We now consider the estimation of the angle between a spin-1/2 system and
a spin-j system for some arbitrary j, where the latter is in an SU(2) coherent
state |jn) (the eigenstate of J - n associated with the maximum eigenvalue) [?].
Alice prepares |n;) ® |jng) and Bob seeks to estimate o = cos !(nj - ng).
The joint Hilbert space decomposes into a sum of a J = j + 1/2 irrep and
a J = j—1/2 irrep. The optimal measurement is the two outcome POVM
{II,1I_}, where Il is the projector onto the j & 1/2 irrep %. Using Clebsch-
Gordon coefficients, the probabilities for each of the outcomes are found to be
p(—la) = Tr(Il_p,) = ﬁhsinZ(aﬂ) and p(+/a) = 1 — p(—|a). We again
consider two possible priors over a.

4This measurement is identical to the one for optimal programmable measurements, de-
veloped using similar techniques.
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Figure 2: Average information gain for measurements on a spin-1/2 system and
a spin-j system. The curves (a),(b) correspond to the optimal measurement
and the optimal local measurement for the case when the spins are prepared
parallel or antiparallel with equal probability. The curves (c),(d) correspond
to the optimal measurement and the optimal local measurements for the case
when the initial direction of each spin is chosen uniformly from the sphere.
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Following the same steps as before, for a uniform prior, the average informa-
tion gain can be derived as a function of j; the result is curve (c¢) of Fig. 2. In the
limit j — oo, we find I, = 1 — (2In2)~! ~ 0.2787 bits, which is precisely the
information gain for the optimal measurement of the angle of a spin-1/2 system
relative to a classical direction given a uniform prior over spin directions [10].

3.6.3 Optimal local measurements

Consider again the simplest case of a pair of spin-1/2 systems. The optimal mea-
surement in this case was found to be the POVM {Il4,IIg}. This measurement
cannot be implemented by local operations on the individual systems because
II4 is a projector onto an entangled state. In general we want to show that the
measurements discussed above are not implementable locally, but that in the
limit of one spin becoming classical the optimal local (separable) measurements
are as good as the optimal joint measurements. This intuition is, in fact, borne
out by the detailed calculations - which can be found in the paper. The average
information gain achieved by the best local measurement, as a function of j, is
plotted as curves (b) and (d) of Fig. 2. Note that the optimum can be achieved
by LOCC measurements in the limit j — oo.

3.6.4 Discussion

We now briefly discuss some other relative parameter estimation tasks for which
our result provides the solution. The case we have yet to address is the esti-
mation of the angle between a spin-j; and a spin-j; system, both in SU(2)
coherent states, for arbitrary 71, jo. Assuming jo > 71, the optimal measure-
ment is the (2j; + 1)-element projective measurement which projects onto the
subspaces of fixed total angular momentum J. The posterior distributions over
a and the average information gain can be calculated in the same manner as
before, although in this case they are substantially more complicated. However,
in the limit jo — o0, the Clebsch-Gordon coefficients simplify, and one can show
that the probability of a measurement outcome J approaches the probabilities
obtained using the Born rule for a projective measurement along the classical
direction defined by the spin-js system. As a result, the posterior distribution
for any measurement result will agree with what would be obtained classically,
regardless of the prior over «. If, in addition, we take j; — oo, the information
gain for o becomes infinite (for any prior distribution) and thus « can be inferred
with certainty from the measurement result, as expected for a measurement of
the angle between two classical directions. Our results also indicate that, in
the classical limit, a measurement of the magnitude of total angular momentum
should be sufficient to estimate the relative angle, which is indeed the case if
the magnitude of each spin is known.

It should be noted that estimating the relative angle between a pair of SU(2)
coherent states is of particular importance because estimating the eccentricity
of an elliptic Rydberg state of a Hydrogen atom is an instance of the same prob-
lem [?]. Rydberg states are significant as they can be prepared experimentally.
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Our results imply that an optimal estimation of eccentricity is in fact straight-
forward to achieve experimentally because it involves only a measurement of
the magnitude of the total angular momentum of the atom.

Our results are also applicable to systems other than spin. For example, for
any realization of a pair of 2-level systems (qubits), the degree of nonorthogo-
nality between their states (measured by, say, the overlap |(1¢; [¢5)|) is invariant
under global transformations and is thus a relative parameter. Our measure-
ment is thus optimal for estimating this nonorthogonality.

In addition to solving various estimation problems, we have shown that a
macroscopic spin in the appropriate limit is equivalent to a classical external RF
as far as relative parameter estimation is concerned. This result suggest that
it may be possible to express all measurements (and possibly all operations) in
a covariant, relative framework that respects the underlying symmetries of the
theory. Such a framework is necessary if one wishes to abide by the principle,
which has been so fruitful in the study of space and time but has yet to be
embraced in the quantum context, that all degrees of freedom must be defined
in terms of relations.

There remain many important questions for future investigation. While
we have focussed on estimating relative parameters of product states, one can
also consider relative parameters of entangled states, and here the landscape
becomes much richer. For instance, for a pair of spin-1/2 systems, while the set
of product states supports a single relative parameter, the set of all two-qubit
states supports three: the angle between the spins in a term of the Schmidt
decomposition [10], the phase between the two terms of this decomposition,
and the degree of entanglement between the spins. Our measurement scheme is
optimal for estimating these relative parameters as well. Given the significance
of entanglement for quantum information theory, there is likely much to be
learned from investigations of other sorts of relative quantum information.

3.7 State Targeting

We have undertaken an exhaustive study of state targeting. Like state estima-
tion it is a primitive of quantum communication. State targeting is important
for analyzing the options available to the sender of quantum systems - it is
dual to the primitive of state estimation which is important for the receivers of
quantum systems. To introduce them, consider the following: The communica-
tion starts with Alice submitting a quantum system to Bob. Eventually, Bob
either tests the system for being in state |t ) or else tests the system for being
in state |¢); ) (where these are not necessarily orthogonal). It is assumed that
Alice at some point learns which state she would prefer to convince Bob that
she submitted. We refer to this preferred state as the target state. The problem
(from Alice’s perspective) is that she must submit the system to Bob prior to
knowing the identity of the target state. It is assumed that Alice has the free-
dom of telling Bob which state he is to test for, but that she may sometimes
prefer to pass a test for the non-target state rather than failing the test for the
target state. As such, she does not always ask Bob to test for the target state.
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More precisely, consider for the moment the following two scenarios:
Scenario 1
(i) Alice submits a system to Bob.

(if) Alice learns the identity of the target state.

(iii) Alice announces a state to Bob (not necessarily the target state).

(iv) Bob performs a Pass/Fail test for the announced state on the system Alice
submitted.

Scenario 2

This is the same as Scenario 1, except that Alice has the option of declining
from announcing a state to Bob, in which case no test is performed. more
precisely, the difference from Scenario 1 is that step (ili) must be replaced by:
(iii") Alice has the option of either (a) announcing a state to Bob (not necessarily
the target state), or (b) declining to announce a state to Bob.

Scenarios 1 and 2 are quite generic to analyses of quantum communica-
tion between antagonistic parties. The option (b) to “decline” at step (iii’)
of Scenario 2 is analogous to the “inconclusive” result in unambiguous state
discrimination.

Heuristically then, Alice’s control (the quantity similar to information gain
in state estimation) quantifies the extent to which she can convince Bob that
a system is in a particular state (by passing the test at step (iv)), given that
she must submit the system to him (step (i)) prior to her learning (at step (ii))
which state it is most advantageous for her to convince Bob she submitted.
We quantify the control by the average probability that Alice succeeds. Her
mazximum control is simply the maximum value of this average probability in
a variation over all strategies available to Alice. Alice’s unambiguous control
quantifies the largest probability of success she can achieve, subject to the con-
straint that she runs exactly zero risk of failing Bob’s test. In general, one would
like to determine the most control that Alice can achieve for a given probability
of failing Bob’s test. When considered as a function of the probability of failing
Bob’s test, this yields a monotonic function; thus it also specifies the minimum
probability of failing Bob’s test for a given control.

It is most common to consider versions of Scenarios 1 and 2 where the
tests which Bob performs are for pure states. A more subtle, and much more
powerful, version of these scenarios can involve Bob’s tests being for mixed
states. In particular, we envision in these more general scenarios that Alice
initially prepares an entangled state over two systems, such that the initial
system she sends Bob is in a certain mixed state. At step (iii) she may then be
required to also submit the other half of the entangled state, and Bob’s test is
performed on the composite system. We have analyzed this mixed state scenario
in detail. What we know about control between two mixed states py p; and the
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equivalent state estimation quantities can be summarized:

Maximum Control : (14 F(pg p1))/2
Maximum Info. Gain : (14 D(py py))/2

1 1
Unambiguous Control <M7<1- §D(p0,p1)
1+ /1—F(py,p1)"2
Unambiguous Discrimination : In progress (see below)

Here D denotes the trace distance, while F' denotes (Uhlmann’s) fidelity.

It is interesting to note that the maximum information gain possible for
distinguishing two mixed states is given by %D(cro,al). The above equation
implies that the maximum control is given by %F(ao, o1). Although the trace
distance and fidelity are known to be closely related mathematical measures of
distinguishability for mixed states, the former is generally presumed to be much
better operationally motivated because of its connection to state estimation.
This result on maximum control can be interpreted as providing a simple and
physically well motivated quantification of the fidelity and its relationship to
the trace distance.
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4 Quantum Gates and Implementations

In this section we outline several directions in which we are trying to push
the boundaries of our understanding about what is necessary versus what is
sufficient to obtain the extra power of quantum computation [1]. In particular
we are interested in whether we need the full power of the standard model of
non-relativistic quantum mechanics to simulate any quantum computation and
the extent to which coherent quantum processes can be replaced by incoherent
ones while retaining the full strength of standard quantum computation. We
have also examined alternative schemes for linear optics quantum computation,
designed to drastically reduce the number of optical components and mode-
matched interactions required.

4.1 A rebit gate for quantum computing

It is interesting, and presumably of practical importance, that the requirements
of universal quantum computing are in some sense weaker than the requirements
of non-relativistic quantum mechanics. This was originally shown within the
quantum Turing machine model [2]. In effect it was shown that a quantum
Turing machine can operate in a real Hilbert space.

In general quantum computation is approached more commonly through the
circuit model (the quantum Turing machine model is not intuitive for construct-
ing useful quantum devices or algorithms.) When evaluating a new proposal
for implementing quantum computation, the standard procedure is to check
whether one can perform (i) a controlled-NOT gate between two qubits, and
(ii) arbitrary single qubit unitary transformations. If so, then universal quantum
computing is certainly possible, since we can perform arbitrary unitary opera-
tions by combinations of these gates. In accordance with the result on quantum
Turing machines however, one should expect that the set of requirements (i)
and (ii) is too stringent.

We have recently constructed a simple scheme for mapping generic quantum
algorithms (such as Shor’s) which use complex amplitudes, to algorithms re-
quiring only real amplitudes. Our investigations have shown that there exists a
two-qubit gate which is universal for quantum computing even though it cannot
be used to build up arbitrary unitary transforms. This implies that the practical
requirements for implementing a universal quantum computer can be simplified
from those currently considered essential.

Our scheme revolves around showing how any quantum computation can be
simply translated into a quantum circuit in which all quantum states and gates
are real. In particular showed that the following two qubit gate (written in the
computational basis) is universal for quantum computing:

10 O 0
01 0 0

G= 0 0 cos¢ —sing |’ (8)
0 0 sing cos¢
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where ¢ is some irrational multiple of 7. Note that this gate does not allow
arbitrary unitary operations to be performed, as can be easily deduced from the
fact that the matrix entries are real - and thus it can only produce superpositions
of states with real amplitudes. In other words, such a gate cannot in fact evolve
us through much, in fact most, of an n qubit Hilbert space, but is still universal
for quantum computing.

A key idea to show the universality of G, is to show how any quantum
computation which uses complex amplitudes, can be replaced by one which is
as efficient (in the complexity theoretic sense), but which makes use of only real
amplitudes. To do this, imagine the standard quantum algorithm involves the
creation at some point of the state:

o) =D _rie il )

If we introduce an ancilla 2-level qubit, the orthonormal states of which we label
|R) and |I'), then an equivalent state for the purposes of quantum computing
is

[Wp) =Y rjcosf;lj)|R) +r;sinb;|j)|I). (10)

J

The purpose of the two-level “R-I” ancilla bit is to keep track of Real and Imag-
inary parts of the amplitudes which appear in (9). We will use the terminology
that the state (10) is the encoded form of (9). Note that the probability of
obtaining the state |j) , upon a measurement in the computational basis, is r]2-
for both |¢) and |9y ), and of course the amplitudes of |¢ g ) are real.

We showed that if an efficient algorithm is implemented such that our stan-

dard quantum computer now undergoes an evolution
) — ') = rieli),
J
then an efficient set of gates built from G can be found such that
Wp) = [WE) =) r}cosbilj) [R) +rjsind}|j)|I).
J

Such considerations may be useful for practical implementations, as well as for
probing the more interesting questions about precisely where quantum comput-
ers gain their power and to what extent the standard complex Hilbert space
formulation of quantum mechanics can actually be argued as necessary as op-
posed to merely sufficient.

4.2 Quantum computing with the Zeno effect

Performing universal quantum computation is generically equated with the abil-
ity to build up arbitrary unitary transformations on a large number of qubits
out of a set of unitary transformations that act on a small number of qubits
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at a time. As such, the primary challenge of building a quantum computer is
most often considered to be finding quantum systems with appropriately con-
trollable Hamiltonians, such that the desired unitary evolution is obtained to
within some small error.

While this standard paradigm certainly enables universal quantum comput-
ing, recent results have shown that it is not necessary that the computation
be built up in such a way. In particular it has been shown that we can often
replace the ‘hard’ parts of a quantum computation (generally the 2 qubit in-
teraction) by using measurements and appropriately prepared ancilla states. In
particular, Gottesman and Chuang [3] showed that teleportation is such a uni-
versal computational primitive. Recently some beautiful ideas for implementing
quantum computation by performing measurements on appropriately prepared
ancilla states have been presented [4], these latter schemes are remarkable in
that they require no coherent (unitary) evolution during the computation at all.

By coupling an idea of Paul Kwiat’s with an idea of ours (which originated
in the work on quantum searching a classical database, Section 2.1.4 of this
report), we have shown that a two outcome projective measurement

Py =0)(0] + [1){1], P = I = [0)(0] + [1)(1] = ) _ |n)(n]
n=2

on a single harmonic oscillator mode can act as quantum computational prim-
itive, which, along with easily implemented single qubit unitary transforma-
tions, enables us to perform universal quantum computation. In contrast with
the aforementioned schemes, we need make no use of prepared ancilla states.
Instead we use the quantum Zeno effect in such a way that a series of measure-
ments approximate a useful unitary evolution.

As an abstract mathematical result this is perhaps not particularly interest-
ing. However our scheme allows for the P, outcome to be destructive - that is,
it absorbs the quanta involved. This is somewhat surprising, since one normally
expects that such processes will result in loss of the quantum systems which are
being used in the computation.

Fig.3. is a schematic showing how to use an interaction free measurement
to turn the incoherent projective measurement P;, P, into a coherent gate. The
black box labelled A consists of a balanced Mach-Zender interferometer, with
a measurement of P; P in both of its arms. (If two photons are incident on a
beamsplitter then the output state is |2,0)+|0, 2) . Thus a measurement of P; P,
in both outputs will certainly give the absorptive outcome P, in one output. If
one photon, or the vacuum, is initially present then the non-destructive outcome
P, will occur in each arm. In effect the box A absorbs the target photon if
and only if the control photon is present.) The target photon enters at the
switchable mirror M1. It passes through a weakly reflecting beam splitter, of
reflectivity sin? @ = 7/N. If the control photon is present, then it collapses onto
the path which doesn’t contain A; if the control photon is not present then the
target proceeds through the interferometer coherently. The photons are cycled
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control photon

cycle N fimes /
" BS2
- 7
target -~
e Y /e
cycle N fimes

Figure 3: By using interaction-free measurements, it is possible to use an ab-
sorbing process to achieve quantum computation
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N times; by choosing N large enough we can make the probability of failure as
small as we wish. It can be shown that this process implements the following
two qubit gate:

100 O
01 0 O
001 O
0 00 -1
This gate coupled with single qubit transformations suffices for quantum com-

puting.

Thus our results show that absorptive nonlinear processes can be used to
perform useful quantum computation.. As a simple example of why this can
be of practical significance, let us think for the moment in terms of photonic
qubits. The interaction strength between two photons is very weak (of order
T178)’ unless we make use of some nonlinear media. Even with such a medium
however, if we limit our considerations to non-resonant (dispersive) interactions
then they are still not particularly strong. The primary reason we would limit
ourselves to non-resonant interactions however, is simply that resonant ones
(which are orders of magnitude stronger) are going to cause absorptive loss of
the photons with which we are trying to compute. However using our scheme,
although the interaction is incoherent, they are not lost to the computation.

Although phrased in terms of photons, our ideas apply quite generally. As
such, we are currently working with our experimentalist colleagues at Bell Labs
to think of systems in which strong nonlinear effects are observed at the single
quantum level. Almost any system with a strong nonlinearity will suffice. (A
preprint is available.)

4.3 Linear optical quantum computation the easy way

Knill, Laflamme and Milburn made the exciting discovery that quantum compu-
tation is possible using linear optics, single photon sources and photodetectors.
The particular constructions they gave were quite inefficient in terms of re-
sources required, their construction also required particular ancillas and gates
that, due to the large number of mode combinations required, would present an
experimentalist with a scary set of mode-matching problems to solve.

Following an idea of Michael Nielsen’s, we have looked at alternative methods
for LOQC, in particular schemes for building up optical versions of Raussendorf
and Briegel’s cluster states. Our analysis has shown that almost any two photon
gate is universal for quantum computing.

We imagine that some non-deterministic gate implements a nontrivial (i.e.
non-factorizable) unitary transformation U on the state of two photons with
probability p. For simplicity, but without loss of generality, we will phrase
our discussion in terms of the polarization degree of freedom. We will not
be concerned with how such a transformation U is constructed - in general
it may use several ancillary photons and interferometers of varying degrees of
complexity. All that is important is that the implementation of U is performed
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L

Figure 4: Parity Gate.

in a classically feed-forwardable manner. By this we mean that the information
as to whether the gate succeeded or not is available, and thus can be used to
condition future operations within the quantum computer. Such a gate was
recently demonstrated by the group of Anton Zeilnger.

As is well known, a controlled-NOT operation can be built (with sufficient
precision) by the implementation of some fixed number of U operations, com-
bined with single qubit transformations. The latter are easily performed de-
terministically with linear optics. Thus, any non-trivial gate U can be used to
build a controlled-NOT gate that succeeds with probability p* for some fixed k.

Give such a controlled-NOT operation, we can use it twice to create GHZ
states of three photons in different spatial modes:

|GHZ ) = 5= (|[HHH) +|[VVV)).
It is these states which will be our critical resource from which we can very
simply construct cluster states. The crucial operation we will use to exploit
this resource is the nondeterministic parity measurement on two photons. The
parity measurement is extremely simple - it consists of a polarizing beamsplitter
oriented at 45°. It can be understood by observing how each of the four basis
states evolves through such a beamsplitter:

|HHy = L|HH)+3[VV)+ |x_4_4)
|HV) = -1 |HV) - L|VH) + [x_,,_)
\VHy = -1 |HV) - L|VH) + [x,__,)
VV)y= LIHH)+3|VV)+|x; 4+ ).
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The subscripts on the states |x) refer to the phases in a superposition of four
states, a characteristic example being;:

X_—s) = 2 (= [2,0) + [2v/,0) — [0, 2m) +[0,2v)) .

In this expression the state |2z, 0) denotes the Fock state with two horizontally
polarized photons in spatial mode 1 and no photons in spatial mode 2.

We see, therefore, that if a (polarization sensitive) measurement is made on
the output modes from the beamsplitter, and one photon is found per mode,
then the gate succeeds (this occurs with probability 1/2) - realizing a degen-
erate parity measurement on the input photons. If, however, two photons are
detected in one output spatial mode, then the gate has failed, and the compu-
tational states pick up the positive or negative phases easily determined from
examining the states |x) . Such a measurement has the advantage that it does
not need detectors with the ability to explicitly count photons (presuming good
single photon sources are available) in order to determine the form of the failure
outcome. This could have significant practical significance.

It is simple to see that, given a resource of three photon GHZ states, we
can efficiently stitch them together with parity measurements into larger GHZ
states of the form |GHZ,, ) = %QH” Y+ |V™))), where we use the notation
that a tensor product of m horizontally polarized photons in different modes is
written H™.

To produce the cluster states discussed above, we will use multiple photons
to encode each abstract qubit within the cluster state:

0) & [H™), [1 &[V™).

Let us illustrate the basic idea by imagining that we have a cluster, and wish
to add a single qubit to it. The initial state of the cluster may be written

[ Xo )[H™ ) +[X1)[V™),

where we have singled out on the right the m photons encoding the qubit of the
cluster to which the bond will be made (the “source” qubit). The n photons
corresponding to the isolated qubit which will be added to the cluster (the
“target qubit”) begin in the state |GHZ, - this is the encoded version of the
state |+ mentioned in the introduction. To make the desired bond, we wish to
achieve an evolution of the form (ignoring normalization)

(X YIH™ ) + X)) V™N(H™) + V™))
= | Xo )[H™ )H™ ) + |Xo ) [H™ )|V™ ) + X0 )[V™ )| H™ )
= X)),
where the primes on the m,n indicate that some photons will be destroyed in

the process of making the bond.
To achieve this evolution, consider implementing the following steps:
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(i) Apply a Hadamard rotation (quarter wave plate) to one photon of the n
photons encoding the target qubit.

(ii) Perform a parity measurement between this photon, and one photon of
those encoding the source qubit.

(iii) If the parity measurement succeeds, then the bond is formed. If the mea-
surement fails, then repeat the process with a new set of photons |GHZ, ).

The crucial aspect of a failure outcome in the above procedure, is that it
leaves the photons in the state

(1Xo ) H™ 1) £ X )|V =t)|vet)

Thus, the initial cluster is left essentially unaffected - it has lost only a single
photon from one encoded qubit, and has possibly received an (easily correctable)
phase error. In the event of a IIp outcome to the parity measurement, the bond
is successful, although a phase error is also obtained. In fact, such phase errors
need not be actively corrected for in the photonic cluster state - similar errors
form an integral part of a cluster state computation anyway, and such errors
can be corrected for by changing some of the single qubit measurements during
the actual computation with the cluster state.

It is quite simple to see that if the bond is successful, then another bond
can be made between the target qubit and some other state of the cluster us-
ing exactly the same procedure of a Hadamard rotation followed by a parity
measurement. In all such cases, a failure of the parity measurements leaves the
main cluster intact and removes the target qubit.

Such a construction of a cluster state clearly requires only polynomial space
and time resources. It should be noted that at the end of the construction the
abstract qubits of the original cluster may well be encoded by more than one
photon. However the extra photons may be removed by measurements in the
|H)=£|V )basis, with only easily correctable phase errors. Several other features
of our scheme make it interesting. The primary one is that melding of cluster
qubits becomes possible, also by a single parity measurement. The melding
procedure operates so as to create a nontrivial topology in a small number of
steps. It also has the distinct advantage that if a meld fails, then it does not
destroy either of the photonic qubits involved in the attempt (unless we have
run out of photons in the redundant encoding for these qubits). Thus a failed
meld can simply be re-attempted.
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Unambiguous discrimination of mixed states, Terry Rudolph, Robert W.
Spekkens, and Peter S. Turner, Phys. Rev. A 68, 010301(R) (2003) (4

pages)
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6 Personnel Supported

Visitors are essential for maintaining a lively exchange of ideas for which it is
very helpful to have the NSA/ARO grant. Please see the interim reports for a
year by year list of the short-term and long-term vistors.

6.1 Lov K. Grover

He is the main researcher in this program. As mentioned in the text of this re-
port, he has pioneered some of the ground-breaking recent concepts in quantum
computation. In recognition of his achievements, in 2002 Bell Labs promoted
him to a Distinguished Member of Technical Staff. He has been at Bell Labs,
Murray Hill since 1994. Prior to that he was a faculty member in the School
of Electrical Engineering at Cornell University. He got his Ph.D. in Electri-
cal Engineering and an M.S. in Physics from Stanford University in 1984 and
an M.S. in Electrical Engineering from Caltech in 1982. He got his B. Tech.
in Electrical Engineering from IIT (Indian Institute of Technology, New Delhi,
India) in 1981.

6.2 Terry Rudolph

Dr. Rudolph was a post-doctoral fellow at Bell Labs. He is a theoretician most
recently from the Institute for Experimental Physics at the University of Vi-
enna. Prior to that he was a faculty member at the University of Toronto. Dr.
Rudolph completed his PhD in 1998 (at age 24), in the field of theoretical quan-
tum optics. He still collaborates intensively with members of the experimental
quantum optics community on problems associated to practical implementations
of quantum computing. Within the field of quantum information, Dr. Rudolph
has authored over ten papers, and is particularly known for his fundamental
work on two-party quantum cryptographic protocols. In his keynote address
at the Workshop on Quantum Computing in Huangshan, China in Sep. 2001,
Charlie Bennett prominently referred to him as the world’s leading expert on di-
rection finding. He spent the period from Nov. 2001 through Sep. 2003 at Bell
Labs. He has recently moved to Imperial College, London, as a faculty member.
He continues to interact with researchers at Bell Labs and visits several times
a year.

6.3 Hein Roehrig

Hein was a Ph.D. candidate in computer science at CWI, Netherlands and is a
regular visitor to Bell Labs. He is originally from Germany and was sponsored
by the German foundation Studienstiftung des Deutschen Volkes. He was at
Bell Labs for a period of 11 months April, 1999 - March, 2000, for a 2 month
period during the summer of 2000 (May - August) and again in 2003 and 2004.
He successsfully completed his Ph.D. in December 2003 and is presently a post-
doctoral fellow in the Universsity of Calgary, Canada.
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